Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Eur J Pharmacol ; 891: 173719, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33144067

RESUMO

Bupivacaine (Bup) has a certain research basis in pain-related diseases, but it has not been studied in painful diabetic neuropathy. In this study, we investigated the role of Bupivacaine in painful diabetic neuropathy. Mouse model with painful diabetic neuropathy was established, and then treated with different concentrations of Bupivacaine. The blood glucose level in the tail vein and the changes in body weight was measured. The mechanical allodynia, thermal hyperalgesia and thermal allodynia was assessed by pain behavioral tests. Microglia were treated with high glucose (HG) and different concentrations of Bupivacaine. The levels of inflammatory cytokines were detected by using Enzyme-linked immunosorbent assays. Dual luciferase reporter assay explored the relationship between miR-23a and phosphodiesterase 4 B (PDE4B). The results displayed that Bupivacaine ameliorated the mechanical allodynia, thermal hyperalgesia, and thermal allodynia in mice with painful diabetic neuropathy, and is more effective at low concentration. Moreover, low concentration of Bupivacaine inhibited inflammation and promoted miR-23a expression in mice with painful diabetic neuropathy and in microglia induced by HIGH GLUCOSE. Overexpression of miR-23a reduced the levels of inflammatory cytokines by down-regulating PDE4B expression. Knockdown of miR-23a reversed the inhibition effect of Bupivacaine on microglial inflammation. These results revealed that low concentration of Bupivacaine inhibited microglial inflammation through down-regulating PDE4B via miR-23a, thereby attenuated painful diabetic neuropathy.


Assuntos
Anestésicos Locais/farmacologia , Bupivacaína/farmacologia , Córtex Cerebral/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Neuropatias Diabéticas/prevenção & controle , Hiperalgesia/prevenção & controle , MicroRNAs/metabolismo , Microglia/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Glicemia/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/enzimologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/fisiopatologia , Hiperalgesia/enzimologia , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Microglia/enzimologia , Transdução de Sinais , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Medula Espinal/fisiopatologia , Estreptozocina
2.
Eur Rev Med Pharmacol Sci ; 24(13): 7399-7411, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706079

RESUMO

OBJECTIVE: The efficacy of melatonin as an analgesic agent has been well documented in animals and humans. However, the underlying mechanisms by which melatonin exerts antinociceptive effects on inflammatory pain are poorly understood. Here, we investigated the potential of melatonin to ameliorate inflammatory pain. MATERIALS AND METHODS: In vitro, ND7/23 neurons were treated with capsaicin. We used PCR and Western blot analyses to detect the expression of neuronal nitric oxide synthase (nNOS) in response to melatonin. Orofacial inflammatory pain was induced by 4% formalin administration on the right whisker pad of Sprague Dawley (SD) rats. The analgesic effect of melatonin was evaluated using mechanical threshold analyses. The expression level of nNOS in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (Vc) neurons was assessed by RNAscope and immunohistochemistry. RESULTS: In vitro, capsaicin upregulated the expression of nNOS, which was dose-dependently reversed by melatonin pretreatment (p < 0.001). In a rat model of orofacial inflammatory pain, melatonin pretreatment significantly attenuated mechanical allodynia in both the acute and chronic phases (p < 0.05). Furthermore, melatonin decreased the formalin-evoked elevated nNOS mRNA and protein levels in the TG and Vc neurons in the acute and chronic phases (p < 0.05). CONCLUSIONS: Taken together, these results suggest that nNOS may play an active role in both peripheral and central processing of nociceptive information following orofacial inflammatory pain induction. The regulatory effect of melatonin on nNOS in inflammatory pain may have potential implications for the development of novel analgesic strategies.


Assuntos
Analgésicos/farmacologia , Dor Facial/prevenção & controle , Hiperalgesia/prevenção & controle , Melatonina/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Dor Nociceptiva/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Núcleos do Trigêmeo/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Dor Facial/enzimologia , Dor Facial/fisiopatologia , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Dor Nociceptiva/enzimologia , Dor Nociceptiva/fisiopatologia , Ratos Sprague-Dawley , Células Receptoras Sensoriais/enzimologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia , Núcleos do Trigêmeo/enzimologia , Núcleos do Trigêmeo/fisiopatologia
3.
Eur J Pharmacol ; 883: 173306, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603693

RESUMO

Chemotherapy-induced peripheral neuropathy is a serious adverse effect of chemotherapeutic agents such as paclitaxel. JTC-801, a nociceptin/orphanin FQ opioid peptide (NOP) receptor antagonist, has been reported to attenuate neuropathic pain in several pain models. However, the therapeutic significance and function of JTC-801 in chemotherapy-induced peripheral neuropathy remain unclear. In this study, we determined the effect of JTC-801 on neuropathic pain induced by paclitaxel, and we explored the potential mechanism in the dorsal root ganglion (DRG). The behavioral test showed that single or multiple systemic administrations of JTC-801 significantly alleviated mechanical allodynia in paclitaxel-treated rats. Using Western blot analysis and immunohistochemistry, we found that paclitaxel increased the expression of phosphatidylinositol 3-kinase (PI3K) and phospho-Akt (p-Akt) in the DRG. Double immunofluorescence staining indicated that p-Akt was expressed in neurons in the DRG. Multiple injections of JTC-801 significantly inhibited the activation of Akt and decreased the expression of inflammatory cytokines. The data suggest that JTC-801 alleviates mechanical allodynia associated with paclitaxel-induced neuropathic pain via the PI3K/Akt pathway.


Assuntos
Aminoquinolinas/farmacologia , Analgésicos/farmacologia , Benzamidas/farmacologia , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/prevenção & controle , Antagonistas de Entorpecentes/farmacologia , Neuralgia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Gânglios Espinais/enzimologia , Gânglios Espinais/fisiopatologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Neuralgia/induzido quimicamente , Neuralgia/enzimologia , Neuralgia/fisiopatologia , Paclitaxel , Fosforilação , Ratos Sprague-Dawley , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Nociceptina
4.
Biomed Pharmacother ; 129: 110356, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535388

RESUMO

Paclitaxel-induced neuropathic pain (PINP) is a dose-limiting side effect and is refractory to widely used analgesic drugs. Previous studies have demonstrated a protective role of peroxisome proliferator-activated receptor gama (PPARγ) in neuropathic pain. However, whether PPARγ activation could alleviate PINP remains to be elucidated. Our previous study has validated the analgesic effect of oltipraz, an nuclear factor erythroid-2 related factor 2 (Nrf2) activator, in a rat model of PINP. In this study, we tested the hypothesis that rosiglitazone, a selective agonist of PPARγ, could attenuate PINP through induction of Nrf2/heme oxygenase-1 (HO-1) signaling pathway. Paclitaxel was injected intraperitoneally on four alternate days to induce neuropathic pain. Paw withdrawal threshold was used to evaluate mechanical allodynia. Western blot and immunofluorescence were used to examine the expression and distribution of PPARγ, Nrf2 and HO-1 in the spinal cord. Our results showed that rosiglitazone attenuated established PINP and delayed the onset of PINP via activation of PPARγ, which were reversed by PPARγ antagonist GW9662. Moreover, rosiglitazone inhibited downregulation of PPARγ in the spinal cord of PINP rats. Furthermore, the analgesic effect of rosiglitazone against PINP was abolished by trigonelline, an Nrf2 inhibitor. Finally, rosiglitazone significantly increased expression of Nrf2 and HO-1 in the spinal cord of PINP rats. Collectively, these results indicated that PPARγ activation might mitigate PINP through activating spinal Nrf2/HO-1 signaling pathway. Our results may provide an alternative option for PINP patients.


Assuntos
Analgésicos/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Hiperalgesia/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Neuralgia/tratamento farmacológico , PPAR gama/agonistas , Paclitaxel , Rosiglitazona/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/induzido quimicamente , Neuralgia/enzimologia , Neuralgia/fisiopatologia , PPAR gama/metabolismo , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais , Medula Espinal/enzimologia , Medula Espinal/fisiopatologia , Regulação para Cima
5.
Brain Res ; 1746: 146999, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579948

RESUMO

Latent sensitization is a long-term model of chronic pain in which hyperalgesia is continuously suppressed by opioid receptors, as demonstrated by the induction of mechanical allodynia by opioid antagonists. Different intracellular signals may mediate the initiation, maintenance and expression of latent sensitization. Our criterion for the involvement of a signal in the maintenance of latent sensitization is that inhibitors should permanently eliminate the allodynia produced by an opioid antagonist. We hypothesized that Src family kinases (SFKs) maintain latent sensitization and tested this hypothesis by inducing latent sensitization in rats with complete Freund's adjuvant (CFA) or spared nerve injury. After measures of mechanical allodynia returned to baseline, vehicle or the SFK inhibitor PP2 were injected intrathecally. The opioid antagonist naltrexone injected intrathecally 15 min later produced allodynia in control rats but not in rats injected with PP2. Vehicle or PP2 were injected daily for two more days and naltrexone was injected five days later. Again, naltrexone induced allodynia in the control rats but not in the rats injected with PP2. Results were similar when latent sensitization was induced with CFA or spared nerve injury. We concluded that an SFK, likely Fyn, maintains latent sensitization induced by inflammation or nerve injury.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Hiperalgesia/enzimologia , Inflamação/enzimologia , Neuralgia/enzimologia , Quinases da Família src/metabolismo , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
6.
J Med Chem ; 63(10): 5185-5200, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32364386

RESUMO

Human carbonic anhydrase (CA; EC 4.2.1.1) isoforms II and VII are implicated in neuronal excitation, seizures, and neuropathic pain (NP). Their selective inhibition over off-target CAs is expected to produce an anti-NP action devoid of side effects due to promiscuous CA modulation. Here, a drug design strategy based on the observation of (dis)similarities between the target CA active sites was planned with benzenesulfonamide derivatives and, for the first time, a phosphorus-based linker. Potent and selective CA II/VII inhibitors were identified among the synthesized phenyl(thio)phosphon(amid)ates 3-22. X-ray crystallography depicted the binding mode of phosphonic acid 3 to both CAs II and VII. The most promising derivatives, after evaluation of their stability in acidic media, were tested in a mouse model of oxaliplatin-induced neuropathy. The most potent compound racemic mixture was subjected to HPLC enantioseparation, and the identification of the eutomer, the (S)-enantiomer, allowed to halve the dose totally relieving allodynia in mice.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/metabolismo , Hiperalgesia/tratamento farmacológico , Oxaliplatina/toxicidade , Animais , Antineoplásicos/toxicidade , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Temperatura Baixa/efeitos adversos , Cristalografia por Raios X/métodos , Modelos Animais de Doenças , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Masculino , Camundongos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
7.
Pharmacol Res ; 157: 104851, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32423865

RESUMO

Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD+-dependent deacetylase sirtuin (SIRT3). SIRT3 can reduce ROS levels by deacetylating MnSOD and enhancing its ability to neutralize ROS or by enhancing the transcription of MnSOD and other oxidative stress-responsive genes. SIRT3 can be post-translationally modified through carbonylation which results in loss of activity. The contribution of post-translational SIRT3 modifications in central sensitization is largely unexplored. Our results reveal that SIRT3 carbonylation contributes to spinal MnSOD inactivation during carrageenan-induced thermal hyperalgesia in rats. Moreover, inhibiting ROS with natural and synthetic antioxidants, prevented SIRT3 carbonylation, restored the enzymatic activity of MnSOD, and blocked the development of thermal hyperalgesia. These results suggest that therapeutic strategies aimed at inhibiting post-translational modifications of SIRT3 may provide beneficial outcomes in pain states where ROS have been documented to play an important role in the development of central sensitization.


Assuntos
Analgésicos/farmacologia , Antioxidantes/farmacologia , Hiperalgesia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Animais , Linhagem Celular Tumoral , Humanos , Hiperalgesia/enzimologia , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Masculino , Metaloporfirinas/farmacologia , Carbonilação Proteica , Ratos Sprague-Dawley , Resveratrol/farmacologia , Transdução de Sinais , Sirtuínas/genética , Medula Espinal/fisiopatologia , Superóxido Dismutase/metabolismo
8.
Fundam Clin Pharmacol ; 34(4): 433-443, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31967341

RESUMO

Visceral hypersensitivity (VH) is common in irritable bowel syndrome (IBS), and female patients are more likely to seek healthcare services for IBS-related abdominal pain. Oestrogen has been reported to mediate pain modulation via its receptor, and mast cells are known to participate in the development of visceral hypersensitivity. Our previous studies showed that the G-protein-coupled oestrogen receptor (GPER, also known as GPR30) was expressed by mast cells in human colonic tissues and was associated with IBS type and severity of visceral pain. However, whether GPER is involved in oestrogen-dependent visceral hypersensitivity via mast cell degranulation is still unknown. Rats were subjected to wrap partial restraint stress to induce visceral hypersensitivity and were ovariectomized (OVX) to eliminate the effects of oestrogen on visceral hypersensitivity. OVX rats were treated with oestrogen, an oestrogen receptor α and ß antagonist (ICI 182.780), a GPER antagonist (G15) or a GPER agonist (G1), to evaluate the effects of oestrogen via its receptor. The colorectal distention test was performed to assess visceral sensitivity. Immunofluorescence studies were performed to evaluate GPER and mast cell tryptase co-expression. Mast cell number with degranulation was detected by specific staining. Mast cell tryptase expression in rat colon was also investigated by Western blot and immunohistochemistry. Substance P and histamine expression were examined by ELISA. GPER was expressed by the majority of tryptase-positive mast cells in the colonic mucosa. Stressed rats showed increased visceral sensitivity, increased mast cell degranulation, mast cell tryptase expression, and increased colon histamine levels. Ovariectomy reduced stress-induced VH in female rats and decreased mast cell degranulation, mast cell tryptase expression, and histamine levels, whereas oestrogen replacement reversed these effects. In OVX rats, the GPER antagonist G15 counteracted the enhancing effects of oestrogen on stress-induced VH, mast cell degranulation, mast cell tryptase, and histamine expression, whereas VH was preserved after treatment with ICI 182.780. On the other hand, pretreatment with the selective GPER agonist G1 at doses between 1 and 20 µg/kg significantly increased VH, mast cell tryptase, and histamine expression in OVX-stressed rats, mimicking the effects of oestrogen. GPER plays a pivotal role in the regulation of mast cell degranulation, mast cell tryptase expression, and histamine levels and contributes to the development of colonic hypersensitivity in a female rat model of IBS.


Assuntos
Dor Abdominal/induzido quimicamente , Colo/efeitos dos fármacos , Estradiol/toxicidade , Histamina/metabolismo , Hiperalgesia/induzido quimicamente , Mastócitos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Estresse Psicológico/complicações , Triptases/metabolismo , Dor Visceral/induzido quimicamente , Dor Abdominal/enzimologia , Dor Abdominal/fisiopatologia , Animais , Degranulação Celular/efeitos dos fármacos , Colo/enzimologia , Colo/inervação , Modelos Animais de Doenças , Feminino , Liberação de Histamina/efeitos dos fármacos , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Imobilização , Mastócitos/enzimologia , Ovariectomia , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Dor Visceral/enzimologia , Dor Visceral/fisiopatologia
9.
Neurosci Lett ; 721: 134763, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31954764

RESUMO

BACKGROUND: Neuromodulation therapies offer a treatment option that has minimal side effects and is relatively safe and potentially reversible. Spinal cord stimulation (SCS) has been used to treat various pain conditions for many decades. High-frequency SCS (HFSCS) involves the application of a single waveform at 10,000 Hz at a subthreshold level, therefore providing pain relief without any paresthesia. METHODS: We tested whether early HFSCS treatment attenuated spared nerve injury (SNI)-induced neuropathic pain. The phosphorylation profile of mitogen-activated protein kinases (MAPKs), i.e., extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38, was evaluated to elucidate the potential underlying mechanism. RESULTS: SNI of rat unilateral sciatic nerves induced mechanical hyperalgesia in the ipsilateral hind paws. Rats were assigned to SCS sessions with HFSCS (frequency 10 kHz; pulse width 30 µs; pulse shape of charge-balanced, current controlled; delivered continuously for 72 h), or sham stimulation immediately after SNI. Tissue samples were examined at 1, 3, 7, and 14 days after SNI. Behavioral studies showed that HFSCS applied to the T10/T11 spinal cord significantly attenuated SNI-induced mechanical hyperalgesia compared with the sham stimulation group. Moreover, western blotting revealed a significant attenuation of the activation of ERK1, ERK2, JNK1, and p38 in the dorsal root ganglia and the spinal dorsal horn. CONCLUSION: Application of HFSCS provides an effective treatment for SNI-induced persistent mechanical hyperalgesia by attenuating ERK, JNK, and p38 activation in the dorsal root ganglia and the spinal dorsal horn.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuralgia/enzimologia , Neuralgia/terapia , Estimulação da Medula Espinal/métodos , Medula Espinal/enzimologia , Animais , Hiperalgesia/enzimologia , Hiperalgesia/terapia , Masculino , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/enzimologia , Neuropatia Ciática/terapia
10.
Biol Pharm Bull ; 42(9): 1569-1574, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474717

RESUMO

The pathophysiological mechanism of central post-stroke pain (CPSP) is complicated and not well understood. Recently, it has been reported that an increase in the levels of spinal nitric oxide synthetase (NOS) occurs in cerebral ischemia, and spinal NOS is involved in the development of neuropathic pain. The aim of this study was to elucidate the mechanism of spinal NOS signaling in the development of CPSP. Male ddY mice were subjected to 30-min long bilateral carotid artery occlusion (BCAO). The withdrawal responses to mechanical stimuli were significantly increased as determined with von Frey test on days 1 and 3 after BCAO. Protein expression of spinal N(G),N(G)-dimethylarginine dimethylaminohydralase 1 (DDAH1), a key enzyme involved in the metabolism of the endogenous NOS, increased on day 1 after BCAO, but not on day 3. Intrathecal (i.t.) injection of PD404182, a DDAH1 inhibitor, significantly suppressed mechanical allodynia on day 1, but not on day 3 after BCAO. In addition, i.t. administration of NG-nitro-L-arginine methyl ester (L-NAME), a non-selective NOS inhibitor, significantly blocked mechanical allodynia on days 1 and 3 after BCAO. Furthermore, BCAO-induced increment of spinal NOS activity was inhibited by the pretreatment with PD404182. These results suggest that mechanical allodynia in the early stage of CPSP is caused by increment of NOS activity through upregulated DDAH1 in the spinal cord.


Assuntos
Amidoidrolases/metabolismo , Isquemia Encefálica/complicações , Hiperalgesia/etiologia , Neuralgia/etiologia , Óxido Nítrico Sintase/metabolismo , Medula Espinal/enzimologia , Animais , Isquemia Encefálica/enzimologia , Hiperalgesia/enzimologia , Masculino , Camundongos Endogâmicos , Neuralgia/enzimologia , Transdução de Sinais
11.
Mol Pain ; 15: 1744806919848929, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041874

RESUMO

The catechol-O-methyltransferase Val158Met polymorphism has been associated with alterations in pain perception, but the influence of the polymorphism on pain perception in patients with chronic pain receiving daily opioid therapy has not been previously reported. The primary aim of this study was to investigate the effects of the catechol-O-methyltransferase Val158Met polymorphism on heat pain perception in a cohort of adults receiving daily opioid therapy for chronic pain. Adults with chronic pain consecutively admitted to an outpatient pain rehabilitation program who met inclusion criteria and were receiving daily opioid therapy were recruited for study participation (N = 142). Individuals were genotyped for catechol-O-methyltransferase Val158Met (rs4680), and the polymorphism was analyzed using an additive and codominant genotype models. The distribution of the Val158Met genotypes was 25% for Val/Val, 41% for Val/Met and 34% for Met/Met (Hardy-Weinberg, P > 0.05). A main effect of genotype was observed for heat pain perception ( P = 0.028). Under the codominant model of allele effects, exploratory post hoc pairwise comparisons adjusted for morphine equivalent dose and pain catastrophizing demonstrated that individuals with the Val/Met genotype were hyperalgesic compared to individuals with the Val/Val ( P = 0.039) and Met/Met ( P = 0.023) genotypes. No significant association was observed between heat pain perception and genotype under the additive model of allele effects. Among patients with chronic pain who were receiving daily opioids, the Val/Met genotype was associated with hyperalgesia using a measure of heat pain perception that has been previously indicative of opioid-induced hyperalgesia in other heterogeneous samples of adults with chronic pain. This study contributes to the emerging understanding of how catechol-O-methyltransferase activity affects pain perception in the context of daily opioid use, and these findings may be useful in the design of future trials aimed at investigating the potential efficacy of ß-2 adrenergic receptor antagonism for opioid-induced hyperalgesia.


Assuntos
Analgésicos Opioides/efeitos adversos , Catecol O-Metiltransferase/genética , Dor Crônica/enzimologia , Dor Crônica/genética , Hiperalgesia/enzimologia , Hiperalgesia/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Dor Crônica/fisiopatologia , Feminino , Genótipo , Temperatura Alta , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Percepção da Dor
12.
Spine (Phila Pa 1976) ; 44(15): E865-E872, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817738

RESUMO

STUDY DESIGN: Animal experiment: a rat model of lumbar disc herniation (LDH) induced painful radiculopathies. OBJECTIVE: To investigate the role and mechanism of AMP-activated protein kinase (AMPK) in dorsal root ganglia (DRG) neurons in LDH-induced painful radiculopathies. SUMMARY OF BACKGROUND DATA: Overactivation of multiple pain signals in DRG neurons triggered by LDH is crucial to the development of radicular pain. AMPK is recognized as a cellular energy sensor, as well as a pain sensation modulator, but its function in LDH-induced pain hypersensitivity remains largely unknown. METHODS: The LDH rat model was established by autologous nucleus pulposus transplantation into the right lumbar 5 (L5) nerve root. At different time points after AMPK agonist metformin (250 mg/kg/d) or mammalian target of rapamycin (mTOR) inhibitor rapamycin (5 mg/kg) intraperitoneal administration, thermal and mechanical sensitivity were evaluated by measuring paw withdrawal latency (PWL) and 50% paw withdrawal thresholds (PWT). The levels of AMPK, mTOR, and p70S6K phosphorylation were determined by Western blot. We also investigated the proportion of p-AMPK positive neurons in the right L5 DRG neurons using immunofluorescence. RESULTS: LDH evoked persistent thermal hyperalgesia and mechanical allodynia on the ipsilateral paw, as indicated by the decreased PWL and 50% PWT. These pain hypersensitive behaviors were accompanied with significant inhibition of AMPK and activation of mTOR in the associated DRG neurons. Pharmacological activation of AMPK in the DRG neurons not only suppressed mTOR/p70S6K signaling, but also alleviated LDH-induced pain hypersensitive behaviors. CONCLUSION: We provide a molecular mechanism for the activation of pain signals based on AMPK-mTOR axis, as well as an intervention strategy by targeting AMPK-mTOR axis in LDH-induced painful radiculopathies. LEVEL OF EVIDENCE: N/A.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Radiculopatia/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Gânglios Espinais/enzimologia , Hiperalgesia/enzimologia , Degeneração do Disco Intervertebral/enzimologia , Deslocamento do Disco Intervertebral/enzimologia , Masculino , Metformina/farmacologia , Neurônios/enzimologia , Neurônios/metabolismo , Núcleo Pulposo/enzimologia , Núcleo Pulposo/metabolismo , Dor/enzimologia , Dor/metabolismo , Fosforilação , Radiculopatia/enzimologia , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Raízes Nervosas Espinhais/enzimologia , Raízes Nervosas Espinhais/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Mol Pain ; 15: 1744806919840582, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30857476

RESUMO

BACKGROUND: Chronic pain has been shown to depend on nociceptive sensitization in the spinal cord, and while multiple mechanisms involved in the initiation of plastic changes have been established, the molecular targets which maintain spinal nociceptive sensitization are still largely unknown. Building upon the established neurobiology underlying the maintenance of long-term potentiation in the hippocampus, this present study investigated the contributions of spinal atypical protein kinase C (PKC) isoforms PKCι/λ and PKMζ and their downstream targets (p62/GluA1 and NSF/GluA2 interactions, respectively) to the maintenance of spinal nociceptive sensitization in male and female rats. RESULTS: Pharmacological inhibition of atypical PKCs by ZIP reversed established allodynia produced by repeated intramuscular acidic saline injections in male animals only, replicating previously demonstrated sex differences. Inhibition of both PKCι/λ and downstream substrates p62/GluA1 resulted in male-specific reversals of intramuscular acidic saline-induced allodynia, while female animals continued to display allodynia. Inhibition of NSF/GluA2, the downstream target to PKMζ, reversed allodynia induced by intramuscular acidic saline in both sexes. Neither PKCι/λ, p62/GluA1 or NSF/GluA2 inhibition had any effect on formalin response for either sex. CONCLUSION: This study provides novel behavioural evidence for the male-specific role of PKCι/λ and downstream target p62/GluA1, highlighting the potential influence of ongoing afferent input. The sexually divergent pathways underlying persistent pain are shown here to converge at the interaction between NSF and the GluA2 subunit of the AMPA receptor. Although this interaction is thought to be downstream of PKMζ in males, these findings and previous work suggest that females may rely on a factor independent of atypical PKCs for the maintenance of spinal nociceptive sensitization.


Assuntos
Isoenzimas/metabolismo , Nociceptividade , Proteína Quinase C/metabolismo , Caracteres Sexuais , Medula Espinal/enzimologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeos Penetradores de Células , Feminino , Formaldeído , Hiperalgesia/enzimologia , Imidazóis/farmacologia , Lipopeptídeos/farmacologia , Masculino , Nociceptividade/efeitos dos fármacos , Organofosfatos/farmacologia , Ratos Long-Evans , Receptores de AMPA/metabolismo , Medula Espinal/efeitos dos fármacos
14.
Neuropharmacology ; 149: 169-180, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797030

RESUMO

While evidence indicates that sigma-1 receptors (Sig-1Rs) play an important role in the induction of peripheral neuropathic pain, there is limited understanding of the role that the neurosteroidogenic enzymes, which produce Sig-1R endogenous ligands, play during the development of neuropathic pain. We examined whether sciatic nerve injury upregulates the neurosteroidogenic enzymes, cytochrome P450c17 and 3ß-hydroxysteroid dehydrogenase (3ß-HSD), which modulate the expression and/or activation of Sig-1Rs leading to the development of peripheral neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of P450c17, but not 3ß-HSD, in the ipsilateral lumbar spinal cord dorsal horn at postoperative day 3. Intrathecal administration of the P450c17 inhibitor, ketoconazole during the induction phase of neuropathic pain (day 0 to day 3 post-surgery) significantly reduced the development of mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paw. However, administration of the 3ß-HSD inhibitor, trilostane had no effect on the development of neuropathic pain. Sciatic nerve injury increased astrocyte Sig-1R expression as well as dissociation of Sig-1Rs from BiP in the spinal cord. These increases were suppressed by administration of ketoconazole, but not by administration of trilostane. Co-administration of the Sig-1R agonist, PRE084 restored the development of mechanical allodynia originally suppressed by the ketoconazole administration. However, ketoconazole-induced inhibition of thermal hyperalgesia was not affected by co-administration of PRE084. Collectively these results demonstrate that early activation of P450c17 modulates the expression and activation of astrocyte Sig-1Rs, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.


Assuntos
Hiperalgesia/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores sigma/metabolismo , Medula Espinal/enzimologia , Esteroide 17-alfa-Hidroxilase/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Astrócitos , Di-Hidrotestosterona/análogos & derivados , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Hiperalgesia/prevenção & controle , Cetoconazol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuralgia/enzimologia , Neuroesteroides/metabolismo , Traumatismos dos Nervos Periféricos/induzido quimicamente , Traumatismos dos Nervos Periféricos/enzimologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Receptores sigma/agonistas , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
15.
Anesth Analg ; 129(4): 1163-1169, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30113397

RESUMO

BACKGROUND: Patients undergoing surgery often feel anxious. Accumulating evidence indicated that presurgical anxiety was related to the more severe postsurgical pain. An animal model was established that exposed Sprague-Dawley rats to a single-prolonged stress (SPS) procedure to induce presurgical anxiety-like behaviors. The experiment revealed that presurgical anxiety not only aggravated but also prolonged postsurgical pain. However, the underlying mechanisms were unknown. METHODS: The rats in group C + Cort, group I + Cort, group A + Cort, and group AI + Cort were injected with corticosterone. The rats in group C + RU486, group I + RU486, group A + RU486, and group AI + RU486 were injected with mifepristone (RU486). The rats in group C + GSK650394 and group AI + GSK650394 were injected with GSK650394. The rats in group C + FC1 and group AI + FC1 were injected with fluorocitrate (FC) 30 minutes before SPS, 30 minutes before incision, and on postoperative days 1, 2, 3, 4, and 5. The rats in group C + FC2 and group AI + FC2 were injected with FC on postoperative days 7, 8, 9, 10, 11, 12, and 13. The paw withdrawal mechanical threshold was assessed 24 hours before SPS and from postoperative days 1 to 28. The level of corticosterone was determined by enzyme-linked immunosorbent assay. The expression of serum/glucocorticoid regulated kinase 1 (SGK1), interleukin-1ß, and tumor necrosis factor-α was visualized by Western blot. The concentrations of adenosine triphosphate (ATP) were measured by ATP assay kit. RESULTS: This study showed SPS elevated plasma glucocorticoids and ATP release from astrocytes, which meant the mechanical pain hypersensitivity in presurgical anxiety-induced postsurgical hyperalgesia was dependent on GCs-SGK1-ATP signaling pathway. SGK1 protein level in astrocytes was increased in response to the glucocorticoid stimuli and enhanced the extracellular release of ATP. Furthermore, spinal astrocytes played a key role in the maintenance. Targeting spinal astrocytes in maintenance phase prevented the pathological progression. CONCLUSIONS: These data suggested an important signaling pathway that affected the pain sensitivity after operation caused by presurgical anxiety.


Assuntos
Trifosfato de Adenosina/metabolismo , Ansiedade/complicações , Astrócitos/efeitos dos fármacos , Corticosterona/farmacologia , Hiperalgesia/etiologia , Proteínas Imediatamente Precoces/metabolismo , Limiar da Dor/efeitos dos fármacos , Dor Pós-Operatória/etiologia , Proteínas Serina-Treonina Quinases/metabolismo , Medula Espinal/efeitos dos fármacos , Procedimentos Cirúrgicos Operatórios , Animais , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Astrócitos/enzimologia , Corticosterona/metabolismo , Modelos Animais de Doenças , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Interleucina-1beta/metabolismo , Masculino , Dor Pós-Operatória/enzimologia , Dor Pós-Operatória/fisiopatologia , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro , Medula Espinal/enzimologia , Medula Espinal/fisiopatologia , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Procedimentos Cirúrgicos Operatórios/psicologia , Fator de Necrose Tumoral alfa/metabolismo
16.
Pain Physician ; 21(5): E555-E564, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30282403

RESUMO

BACKGROUND: Over-expression of spinal protein kinase Cγ(PKCγ) contributes to the induction of persistent bilateral hyperalgesia following inflammatory injury, yet the role of spinal PKCγ in short- and long-lasting pain behavior is poorly understood. OBJECTIVE: This study aimed to characterize the contribution of spinal PKCγ to spontaneous pain and long-lasting bilateral hyperalgesia in formalin-induced inflamed mice using pharmacological inhibition. STUDY DESIGN: Laboratory animal study. SETTING: The study was performed in the Department of Human Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, the Fourth Military Medical University (Xi'an, China) and the Department of Anesthesiology, Fuzhou General Hospital (Fuzhou, China). METHODS: Male mice were unilaterally intraplantarly injected with formalin to induce inflammatory pain. Spontaneous pain behaviors, including flinches and lickings, were recorded by off-line video during the first hour post-injection and counted. Using von Frey tests, long-lasting bilateral mechanical paw withdrawal thresholds were determined before injection and at indicated time points thereafter. Temporal expression of spinal PKCγ was observed by immunohistochemical staining. For pharmacological inhibition, mice were treated daily with intrathecal Tat carrier or selective PKCγ inhibitor KIG31-1, from 1 hour prior to 10 days after formalin injection. Spontaneous pain behaviors and long-lasting bilateral mechanical hyperalgesia were assessed. Spinal PKCγ expression was also observed by using immunohistochemical staining and western blot. RESULTS: The number of PKCγ-immunoreactive (ir) spinal neurons was significantly higher at 10 days, but not 2 hours, after formalin intraplantar injection, and accompanied by long-lasting bilateral hyperalgesia. Furthermore, long-lasting bilateral hyperalgesia could be reversed by pharmacological inhibition of over-expressed spinal PKCγ; however, pretreating with intrathecal KIG31-1 showed no antinociceptive effects on short-term spontaneous pain behaviors. LIMITATIONS: All results were obtained from the mice and no PKCγ inhibitors were available through clinical practice. Therefore, it remains difficult to draw definitive connections between animal research and human application. CONCLUSION: Our findings suggest that spinal PKCγ plays a predominant role in long-lasting bilateral hyperalgesia, but not in the spontaneous pain behaviors induced by formalin. KEY WORDS: Formalin, spontaneous pain, mechanical hyperalgesia, protein kinase C gamma, KIG31-1, mice.


Assuntos
Dor Crônica/enzimologia , Hiperalgesia/enzimologia , Proteína Quinase C/metabolismo , Medula Espinal/enzimologia , Animais , Comportamento Animal/efeitos dos fármacos , China , Dor Crônica/induzido quimicamente , Formaldeído/toxicidade , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Medição da Dor/métodos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
17.
J Med Chem ; 61(19): 8639-8657, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196704

RESUMO

The synthesis of potent metabolically stable endocannabinoids is challenging. Here we report a chiral arachidonoyl ethanolamide (AEA) analogue, namely, (13 S,1' R)-dimethylanandamide (AMG315, 3a), a high affinity ligand for the CB1 receptor ( Ki of 7.8 ± 1.4 nM) that behaves as a potent CB1 agonist in vitro (EC50 = 0.6 ± 0.2 nM). (13 S,1' R)-dimethylanandamide is the first potent AEA analogue with significant stability for all endocannabinoid hydrolyzing enzymes as well as the oxidative enzymes COX-2. When tested in vivo using the CFA-induced inflammatory pain model, 3a behaved as a more potent analgesic when compared to endogenous AEA or its hydrolytically stable analogue AM356. This novel analogue will serve as a very useful endocannabinoid probe.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Analgésicos/química , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Estabilidade Enzimática , Adjuvante de Freund/toxicidade , Células HEK293 , Humanos , Hiperalgesia/enzimologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Ratos
18.
J Med Chem ; 61(17): 7929-7941, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30095904

RESUMO

Here, we report analgesic and anti-inflammatory activity of a series of compounds obtained by appending 4-aminophenylmorpholin-3-one and acyclic, cyclic, or heterocyclic moieties on 1,3,5-triazine. The structures of compounds 4b and 6b are optimized for the best inhibition of COX-2 with IC50 values of 0.06 and 0.08 µM, respectively, and selectivity over COX-1 of 166 and >125, respectively. At the dose of 5 mg kg-1, these compounds significantly reduced acetic acid induced writhings, and their ED50 values were found to be 2.2 and 1.9 mg kg-1, respectively. Besides the cell-based and animal-based experiments showing the modes of action of these compounds targeting COX-2, the interaction behavior of 4b with COX-2 was also characterized, with physicochemical experiments including ITC, NMR, UV-vis, and molecular-modeling studies. Characteristically, these compounds interact with R120, Y355, and W385, the residues responsible for holding the substrate and mediating the process of electron transfer during the metabolic phase of the enzyme.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Hiperalgesia/prevenção & controle , Inflamação/prevenção & controle , Dor/prevenção & controle , Triazinas/química , Analgésicos/química , Analgésicos/farmacologia , Animais , Carragenina/toxicidade , Ciclo-Oxigenase 2/química , Feminino , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Masculino , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Dor/induzido quimicamente , Dor/enzimologia , Relação Estrutura-Atividade
19.
Elife ; 72018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968565

RESUMO

Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.


Assuntos
Gliose/genética , Hiperalgesia/genética , MAP Quinase Quinase Quinases/genética , Neuralgia/genética , Traumatismos dos Nervos Periféricos/genética , Células Receptoras Sensoriais/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Gliose/enzimologia , Gliose/patologia , Gliose/prevenção & controle , Hiperalgesia/enzimologia , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , MAP Quinase Quinase Quinases/deficiência , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microglia/enzimologia , Microglia/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/enzimologia , Neuralgia/patologia , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/enzimologia , Traumatismos dos Nervos Periféricos/patologia , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Medula Espinal/enzimologia , Medula Espinal/patologia , Tato , Transcrição Gênica
20.
Biomed Pharmacother ; 101: 821-832, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29635891

RESUMO

Diabetic neuropathy (DN) is one of most disabling disorder complicating diabetes mellites (DM), which affects more than 50% of the all diabetic patients during the disease course. Duloxetine (DX) is one of the first-line medication that approved by FDA for management of DN, nevertheless, it is too costly and has many adverse effects. Recently, phloretin (PH) exhibited powerful euglycemic, antihyperlipidemic, antioxidant, and anti-inflammatory activities. Therefore, we investigated the in vivo possible antineuropathic activity of phloretin, besides, its modulating effects on duloxetine potency, in a rat model of DN. Twelve-week-old male Wistar rats received a single intraperitoneal injection of 55 mg/kg STZ to induce DM. Either DX (30 or 15 mg/kg dissolved in distilled water), PH (50 0r 25 mg/kg dissolved in 0.5% DMSO) or a combination of 15 mg/kg DX and 25 mg/kg PH, used daily orally for 4 weeks to treat DN, starting from the end of the 4th week of DM development, when DN confirmed. Our finding showed that both DX and PH dose-dependently improved behavioral parameters (with the superiority of DX), sciatic nerve tissue antioxidant state, and suppressed tissue inflammatory cytokine, besides, they abrogated the tissue histopathological changes (with the superiority of PH). Moreover, DX augmented the DM metabolic disturbance and hepatic dysfunction, however, PH effectively amended these disorders. Furthermore, the low-dose combination of both, had the merits of both medications, with the alleviation of their disadvantages. Therefore, phloretin could be a promising agent in the management of DN either alone or in combination with duloxetine.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Cloridrato de Duloxetina/uso terapêutico , Floretina/uso terapêutico , Animais , Comportamento Animal , Glicemia/metabolismo , Capilares/patologia , Temperatura Baixa , Citocinas/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/enzimologia , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/enzimologia , Cloridrato de Duloxetina/farmacologia , Hemoglobinas Glicadas/metabolismo , Hiperalgesia/sangue , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/enzimologia , Lipídeos/sangue , Masculino , Estresse Oxidativo/efeitos dos fármacos , Floretina/farmacologia , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Estreptozocina , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...